§§ 25.725-25.727 gear system that has similar energy absorption characteristics. [Doc. No. 1999-5835, 66 FR 27394, May 16, 2001] # §§ 25.725-25.727 [Reserved] #### §25.729 Retracting mechanism. - (a) General. For airplanes with retractable landing gear, the following apply: - (1) The landing gear retracting mechanism, wheel well doors, and supporting structure, must be designed for— - (i) The loads occurring in the flight conditions when the gear is in the retracted position. - (ii) The combination of friction loads, inertia loads, brake torque loads, air loads, and gyroscopic loads resulting from the wheels rotating at a peripheral speed equal to $1.23V_{SR}$ (with the wing-flaps in take-off position at design take-off weight), occurring during retraction and extension at any airspeed up to $1.5\ V_{SR1}$ (with the wing-flaps in the approach position at design landing weight), and - (iii) Any load factor up to those specified in §25.345(a) for the wing-flaps extended condition. - (2) Unless there are other means to decelerate the airplane in flight at this speed, the landing gear, the retracting mechanism, and the airplane structure (including wheel well doors) must be designed to withstand the flight loads occurring with the landing gear in the extended position at any speed up to $0.67\ V_C$ - (3) Landing gear doors, their operating mechanism, and their supporting structures must be designed for the yawing maneuvers prescribed for the airplane in addition to the conditions of airspeed and load factor prescribed in paragraphs (a)(1) and (2) of this section. - (b) Landing gear lock. There must be positive means to keep the landing gear extended in flight and on the ground. There must be positive means to keep the landing gear and doors in the correct retracted position in flight, unless it can be shown that lowering of the landing gear or doors, or flight with the landing gear or doors extended, at any speed, is not hazardous. - (c) Emergency operation. There must be an emergency means for extending the landing gear in the event of— - (1) Any reasonably probable failure in the normal retraction system; or - (2) The failure of any single source of hydraulic, electric, or equivalent energy supply. - (d) *Operation test*. The proper functioning of the retracting mechanism must be shown by operation tests. - (e) Position indicator and warning device. If a retractable landing gear is used, there must be a landing gear position indicator easily visible to the pilot or to the appropriate crew members (as well as necessary devices to actuate the indicator) to indicate without ambiguity that the retractable units and their associated doors are secured in the extended (or retracted) position. The means must be designed as follows: - (1) If switches are used, they must be located and coupled to the landing gear mechanical systems in a manner that prevents an erroneous indication of "down and locked" if the landing gear is not in a fully extended position, or of "up and locked" if the landing gear is not in the fully retracted position. The switches may be located where they are operated by the actual landing gear locking latch or device. - (2) The flightcrew must be given an aural warning that functions continuously, or is periodically repeated, if a landing is attempted when the landing gear is not locked down. - (3) The warning must be given in sufficient time to allow the landing gear to be locked down or a go-around to be made. - (4) There must not be a manual shutoff means readily available to the flightcrew for the warning required by paragraph (e)(2) of this section such that it could be operated instinctively, inadvertently, or by habitual reflexive action. - (5) The system used to generate the aural warning must be designed to minimize false or inappropriate alerts. - (6) Failures of systems used to inhibit the landing gear aural warning, that would prevent the warning system from operating, must be improbable. - (7) A flightcrew alert must be provided whenever the landing gear position is not consistent with the landing gear selector lever position. - (f) Protection of equipment on landing gear and in wheel wells. Equipment that is essential to the safe operation of the airplane and that is located on the landing gear and in wheel wells must be protected from the damaging effects of— - (1) A bursting tire; - (2) A loose tire tread, unless it is shown that a loose tire tread cannot cause damage. - (3) Possible wheel brake temperatures. [Doc. No. 5066, 29 FR 18291, Dec. 24, 1964, as amended by Amdt. 25–23, 35 FR 5676, Apr. 8, 1970; Amdt. 25–42, 43 FR 2323, Jan. 16, 1978; Amdt. 25–72, 55 FR 29777, July 20, 1990; Amdt. 25–75, 56 FR 63762, Dec. 5, 1991; Amdt. 25–136, 77 FR 1617, Jan. 11, 2012] ## § 25.731 Wheels. - (a) Each main and nose wheel must be approved. - (b) The maximum static load rating of each wheel may not be less than the corresponding static ground reaction with— - (1) Design maximum weight; and - (2) Critical center of gravity. - (c) The maximum limit load rating of each wheel must equal or exceed the maximum radial limit load determined under the applicable ground load requirements of this part. - (d) Overpressure burst prevention. Means must be provided in each wheel to prevent wheel failure and tire burst that may result from excessive pressurization of the wheel and tire assembly. - (e) *Braked wheels*. Each braked wheel must meet the applicable requirements of §25.735. [Doc. No. 5066, 29 FR 18291, Dec. 24, 1964, as amended by Amdt. 25–72, 55 FR 29777, July 20, 1990; Amdt. 25–107, 67 FR 20420, Apr. 24, 2002] # §25.733 Tires. (a) When a landing gear axle is fitted with a single wheel and tire assembly, the wheel must be fitted with a suitable tire of proper fit with a speed rating approved by the Administrator that is not exceeded under critical conditions and with a load rating approved by the Administrator that is not exceeded under— - (1) The loads on the main wheel tire, corresponding to the most critical combination of airplane weight (up to maximum weight) and center of gravity position, and - (2) The loads corresponding to the ground reactions in paragraph (b) of this section, on the nose wheel tire, except as provided in paragraphs (b)(2) and (b)(3) of this section. - (b) The applicable ground reactions for nose wheel tires are as follows: - (1) The static ground reaction for the tire corresponding to the most critical combination of airplane weight (up to maximum ramp weight) and center of gravity position with a force of 1.0g acting downward at the center of gravity. This load may not exceed the load rating of the tire. - (2) The ground reaction of the tire corresponding to the most critical combination of airplane weight (up to maximum landing weight) and center of gravity position combined with forces of 1.0g downward and 0.31g forward acting at the center of gravity. The reactions in this case must be distributed to the nose and main wheels by the principles of statics with a drag reaction equal to 0.31 times the vertical load at each wheel with brakes capable of producing this ground reaction. This nose tire load may not exceed 1.5 times the load rating of the tire - (3) The ground reaction of the tire corresponding to the most critical combination of airplane weight (up to maximum ramp weight) and center of gravity position combined with forces of 1.0g downward and 0.20g forward acting at the center of gravity. The reactions in this case must be distributed to the nose and main wheels by the principles of statics with a drag reaction equal to 0.20 times the vertical load at each wheel with brakes capable of producing this ground reaction. This nose tire load may not exceed 1.5 times the load rating of the tire. - (c) When a landing gear axle is fitted with more than one wheel and tire assembly, such as dual or dual-tandem, each wheel must be fitted with a suitable tire of proper fit with a speed rating approved by the Administrator